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Information provision experiments have become a popular experimental design be-

cause the effect of a shift in beliefs on behavior can be informative about the effect of

a shift in the underlying economic fundamental. While it may be difficult to vary the

returns to education while holding all else fixed, it is easy to generate variation in beliefs

by experimentally providing people with new information (Jensen, 2010). While it may not

be feasible to change outside wage offers, or someones rank in the income distribution,

or the racial composition of welfare recipients, it has proven possible to shift people’s

perceptions (Jäger et al., 2023; Bottan and Perez-Truglia, 2022b; Akesson et al., 2022).

In these experiments, researchers vary the information (or “signal”) shown to par-

ticipants. Then, they typically estimate the effect of beliefs on behavior using two-stage

least square (TSLS) regressions. When the effects of beliefs are heterogeneous, TSLS tar-

gets a weighted average of these heterogeneous effects with weights proportional to the

heterogeneity in the first stage (Angrist and Imbens, 1995).

I show that in information provision experiments, TSLS puts themost weight on people

who update their beliefs the most in response to new information. Coefficients in common

specifications will thus differ from the average effect of beliefs to the extent that the

heterogeneity in the effect of information provision on beliefs is correlated with the

heterogeneous effects of beliefs on behavior. In this sense, TSLS estimates depend on any

endogeneity in belief updating in response to new information.

I propose that researchers use an alternative local least squares (LLS) estimator, which

I show consistently estimates the average partial effect (APE) under an assumption of

Bayesian belief updating. The first stage change in beliefs is used to construct a control

for the endogenous component of belief updating. Conditional on this control function,

OLS identifies the average effect of beliefs for the subset with a particular value of the

control; iterating over all of these subsets identifies the average partial effect (Masten and

Torgovitsky, 2016). Since the LLS estimator uses the observed belief update to control for

endogeneity in the first stage, it is available in so-called “active” experimental designs,

where study participants are randomly assigned to see a “high” or “low” signal (e.g. Akesson

et al., 2022; Bottan and Perez-Truglia, 2022b; Roth et al., 2022).1

1When an active experimental design is not possible, the theoretical characterization of TSLS estimates
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The key identification result is robust to deviations from the Bayesian belief updating

assumption. The APE will still be identified as long as belief updating satisfies a rank

invariance condition (Masten and Torgovitsky, 2014, 2016). Conditional on the prior belief

and the sign of the difference between the signal and the prior, the posterior beliefs must

be rank invariant across potential signals.

The LLS estimator will be larger in magnitude than TSLS whenever there is negative

correlation between the extent of belief updating and the importance of these beliefs for

decision-making. I show that this negative correlation will arise in models where beliefs

are formed through costly information acquisition. In these models, people with large

causal effects of beliefs endogenously form precise beliefs in equilibrium. When they

join the sample in an information provision experiment, they are less responsive to new

information and have a smaller first stage response. The following example illustrates the

key mechanism.

Alice bicycles to work when it is sunny and drives when it rains; Bob always drives.

Alice checks the weather since her decision depends on it. Bob does not. Alice and Bob

join an experiment and are provided with accurate information about the weather. Bob

updates his beliefs since he is uninformed, but Alice is already well informed and so only

changes her beliefs slightly. This intervention shifts beliefs but not behaviors, even though

Alice bases her actions directly on her beliefs.

This mechanism may explain puzzling results in the literature that find small or in-

significant effects of beliefs on behavior despite information treatments that have a large

effect on beliefs (Alesina et al., 2023; Kuziemko et al., 2015). In general, the bias of existing

estimators can be studied in any model that relates belief updating to the effects of beliefs.

I apply the local least squares estimator to a recent study of the effect of beliefs about

the gender wage gap on demand for public policy intervention (Settele, 2022). In this

exercise, the average partial effect of beliefs on demand for public policy is roughly 70%

larger than the corresponding TSLS estimate. I use the observed change in beliefs caused

by the information treatment to order people by their responsiveness to new information,

provides a framework for using theory that relates belief formation to the causal effects of interest to
extrapolate from TSLS estimates to average effects in the population.
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conditional on their prior beliefs. Average effects are close to zero for the 20% of people

who update their beliefs the most, but are nearly three times as large as the original TSLS

estimate among the bottom 60%. While these conditional average partial effects are less

precisely estimated, they are broadly consistent with the theoretical predictions.

This paper builds on the large literature on instrumental variables with heterogeneous

effects (Angrist and Imbens, 1995). This paper also builds on and studies the large and

growing applied literature that uses information provision experiments to study the effects

of beliefs on behavior and decision-making (Balla-Elliott et al., 2022; Cavallo et al., 2017;

Cullen et al., 2022; Cullen and Perez-Truglia, 2022; Fuster et al., 2022; see Haaland et

al., 2023, for a recent review). I focus on experimental designs where the information

treatment is quantitative, for example, “12 percent of the US population are immigrants”

(Grigorieff et al., 2020; Hopkins et al., 2019) and not treatments that are qualitative, for

example, a video (Alesina et al., 2021; Dechezlepretre et al., 2023; Stantcheva, 2023).2

In independent and concurrent work, Vilfort and Zhang (2023) also study the inter-

pretation of common TSLS specifications in information provision experiments. They

consider a general non-parametric model and provide conditions for when TSLS will have

negative weights. They propose that researchers use information about the priors and

signals in passive designs to construct specifications that are guaranteed to have non-

negative weights. I show that even when weights are non-negative, they will generally

depend on endogeneity in belief updating. For this reason, I propose that researchers use

an alternative LLS estimator that consistently estimates an unweighted average effect.

This paper thus makes two main contributions to the existing literature. This first is to

show that even when TSLS weights are non-negative, they may still depend on the causal

effects of interest in an undesirable way. I show how the workhorse Bayesian updating

model can be used to interpret these weights, and to connect the TSLS weights to economic

theories of how beliefs are formed. These models of belief formation can then be used

to formally study the dependence between the weights and the causal effects of interest.
2Examples of the kind of quantitative information presented in these experiments are government

statistics (Bottan and Perez-Truglia, 2022a; Kuziemko et al., 2015; Roth et al., 2022; Settele, 2022), previous
responses from other participants (Balla-Elliott et al., 2022; Bursztyn et al., 2020; Coibion et al., 2021) or
other institutional sources (Cullen et al., 2022; Cullen and Perez-Truglia, 2022). See Haaland et al. (2023) for
a systematic treatment.
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Certain models can sign the bias of TSLS relative to the unweighted average effect.

The second contribution of this paper is to show that the Bayesian learning assumption

on the first stage can be used to construct an alternative estimator that directly targets

the average partial effect. This estimator importantly does not depend on the relationship

between heterogeneity in belief updating and heterogeneity in the effects of beliefs. I show

how this estimator can be applied to active experimental designs and suggest how it can

naturally be extended to passive designs, though I leave the formal development of cases

other than the active design to future work.

The remainder of this paper has the following structure. Section 1 presents the model

framework and shows how the key coefficient in a common linear belief updating model

can be micro-founded in a normal-normal Bayesian updating model. Section 2 surveys

common TSLS specifications and makes clear the conditions under which they estimate

a non-negatively weighted average of heterogeneous causal effects. It then introduces

a simple model of belief formation to interpret these weights substantively. Section 3

shows that Bayesian updating is sufficient to identify the average partial effect (APE) in

experimental designs with an active control group. Section 4 applies this estimator to

Settele (2022) and shows that the empirical results are broadly consistent with the theory.

Section 5 concludes.

1. Model Framework

This section defines the notation we will use throughout. We will work with a simple

outcome equation that is linear in beliefs and allows for beliefs to have heterogeneous

effects on behaviors. Then, I will introduce notation for the experiments we will analyze.

There is now a robust literature that uses information provision experiments, and a

range of designs now fall under this broad umbrella (Haaland et al., 2023). For example,

some information provision experiments focus on how beliefs are formed in response to

new information (Coibion et al., 2021; Fuster et al., 2022). There is also a set of papers with

a more qualitative analysis of how beliefs affect behaviors. These papers use information

treatments that are more qualitative – for example informational videos (Alesina et al.,
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2021; Dechezlepretre et al., 2023; Stantcheva, 2023).

This paper focuses on experiments with two key features. First, they study how beliefs

affect behavior and not only how beliefs respond to new information. Additionally, we

will focus on experimental designs where the information treatment is quantitative, for

example “12 percent of the US population are immigrants” (Grigorieff et al., 2020; Hopkins

et al., 2019) and not treatments that are qualitative, for example “[t]he chances of a poor kid

staying poor as an adult are extremely large” (Alesina et al., 2018).

To analyze belief updating in these designs, we will follow the literature in using a

model that is linear in the difference between the new signal and the prior. This linear

first stage equation can be interpreted in a Bayesian model of belief updating. This will

help exposition throughout by allowing us to express TSLS weights in terms of substantive

features like the learning rate and the relative precision of prior beliefs.

1.1. Outcomes

The outcome equation is a linear model with heterogeneous coefficients on beliefs:

Yi = τiXi + Ui (1)

This is the canonical random coefficients model where Yi is the outcome or behavior of

interest, Xi is the belief, Ui is the structural error term, and τi is the partial effect of Xi on

Yi. We will assume that the beliefs Xi are endogenous
(
E
[
XiUi

]
=/ 0
)
; Yi can be arbitrarily

affected by unobservables Ui. The only restriction here is that the causal effect for a given

individual is linear.

A natural parameter of interest is the average partial effect (APE) of Xi on Yi, denoted

as E
[
τi
]
. This parameter has a simple interpretation as the average effect of beliefs on

behaviors. In a recent example, Jäger et al. (2023) study the effect of workers’ beliefs about

their outside options on labor market outcomes. They pose the question “how much does

a percentage point shift in beliefs about a workers’ outside option causally shift workers’

intended labor market behavior? ” (p. 25). The average partial effect answers this question:

on average, a one unit increase in beliefs causally shifts the outcome Y by E
[
τi
]
.
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An important special case of the linear in parameters model is the log-log specification,

which is often interpreted in applied work as an approximation to an average elasticity. The

average coefficient on beliefs in the log-logmodel – sometimes called a behavioral elasticity

(Haaland et al., 2023) – is thus a special case of an APE. Results about the APE therefore

apply immediately to settings where the target parameter is a behavioral elasticity.

1.2. Information Treatment and Beliefs

There are two major classes of experiments with quantitative information treatments:

“active” designs where all participants see some new information, but the particular signal

is randomly assigned, and “passive” designs where only a subset of participants see new

information and the remaining control group is not shown any signal (Haaland et al.,

2023).

We will denote treatments arms by Zi. Throughout, we will assume that the researcher

randomizes over two arms Zi ∈ {A,B}. In the passive design, arm A will be the treatment

arm that receives new information and arm Bwill be the control arm that does not receive

new information. In the active design, arm A will be the treatment arm that receives

one signal and arm B will be the treatment arm that receives the alternative signal. The

treatment indicator Ti ≡ 1
(
Zi = A

)
indicates assignment to arm A. This is consistent

with the language in active designs that arm B is an “active” control group. In any design,

treatment arms will be randomly assigned. Finally, Si(z) is the signal that is shown to

individual i in treatment arm z.

While the treatment Zi will be randomly assigned, it is important to note that the

realized signal Si(Zi) can generally vary with individuals in a way that is not assumed to

be independent of the structural unobservable Ui. For example, consider when Si(A) is

a high estimate of home value and Si(B) is a low estimate of the home value as in Bottan

and Perez-Truglia (2022a). The researcher will randomly assign an individual to see a high

or low signal, but the potential signal values are not random and indeed often depend

directly on observable features.3 Roth et al. (2022) explicitlymodel the two potential signals

as noisy measures of the same object: increases in unemployment during a recession.
3Balla-Elliott et al. (2022) use the type of the small-business and region to construct the signals values
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This makes clear that the difference between the signals is due to random noise due to

difference in the data sources, but the level of the signals is not randomly assigned. The

realized signal is only randomly assigned conditional on the potential signal values.

Treatment is assigned randomly in the sense that Zi is statistically independent of

Ui, X0i , Si(·), αi, τi. We will introduce one final notational convention: in passive designs,

treatment arm B does not receive any signal. We will define Si(B) ≡ X0i in passive designs.

This is a notational convention so that we can write the potential outcomes for beliefs in

a unified way. Importantly, this does not imply that the control group in passive designs

receives a signal.

With this in mind, we can write the potential outcomes for beliefs as

Xi(z) = X
0
i + αi

(
Si(z) – X

0
i
)

(2)

In treatment arms that receive information, the posterior is a weighted average of the new

signal and the prior. The weight on the signal is given by the heterogeneous learning rate

αi. Notice that in passive designs Xi(B) = X0i since we set Si(B) ≡ X0i when treatment arm

B receives no information. It is worth emphasizing that this is merely a notational device

to ensure that the potential signals Si(z) are always defined.

This weighted average expression is a workhorse in the applied literature and seems to

reflect belief updating well, at least in the context of information provision experiments

(Balla-Elliott et al., 2022; Cavallo et al., 2017; Cullen et al., 2022; Cullen and Perez-Truglia,

2022; Fuster et al., 2022; Giaccobasso et al., 2022). We will use the structural equations (1)

and (2) to study common empirical specifications.

1.3. Belief Potential Outcomes are Motivated by Bayesian Learning

The literature oftenmotivates thisweighted-average expression in (2) in aBayesian learning

model with normally distributed beliefs (Balla-Elliott et al., 2022; Cullen and Perez-Truglia,

2022). Since this Bayesian updating form in the first stagewill be helpful to guide exposition

throughout, I will briefly show how these potential outcomes for beliefs are generated by

a Bayesian learning model and relate the key coefficient αi to model primitives.
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Consider a group of individuals with uncertain prior beliefs. The subjective probability

that the variable Xi takes the value x is given by the density of the normal distribution

N
(
X0i ,σ

2
iX

)
. We thus interpret X0i as the mean of the prior distribution. As shorthand, we

will call X0i the prior belief of an individual i.

People then observe a signal Si, whichwemodel as a draw from a distributionN(S∗i ,σ
2
iS).

The variances of these distributions to reflect the subjective (inverse) precision of the prior

and the signal. These variances are important only in their relative size. People for whom

σ2iS/σ
2
iX is large think their prior is more precise than the signal, whereas those for whom

σ2iS/σ
2
iX is small think that the signal is more precise than their prior.

The posterior is then a distribution

N

((
1 – αi

)
X0i + αiSi,

σ2iSσ
2
iX

σ2iS + σ
2
iX

)
(3)

where αi ≡
σ2iX

σ2iS + σ
2
iX

(4)

As with the prior, we will call the mean of this distribution the posterior X. Note that the

mean of the posterior distribution is a weighted average of the prior X0i and the signal Si,

where theweights are given by their relative precision.4We can also note that σ2iSσ
2
iX

σ2iS+σ
2
iX
< σ2iX ;

intuitively, the posterior distribution is more precise than the prior distribution.5We can

then relate the prior X0i , the signal Si and the posterior Xi through the equation

Xi = (1 – αi)X
0
i + αiSi (5)

which generates the potential outcomes for beliefs in (2). There is some direct empirical

support for this Bayesian foundation of the linear updating model. Roth et al. (2022) find

that all the belief updating in their study is driven by people who report being “very

unsure”, “unsure” or “somewhat unsure” and that people who are “sure” or “very sure”

do not update their beliefs. Similarly Roth and Wohlfart (2020) find that people who are

less confident in their prior beliefs update roughly twice as much as people who are more
4A full discussion of this derivation can be found in introductory textbook treatments of Bayesian statistics

like Robert (2007) or Hoff (2009).
5There is experimental evidence that people randomized to the group receiving a signal report greater

confidence in their posterior beliefs (Akesson et al., 2022; Cavallo et al., 2017).
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confident. Kerwin and Pandey (2023) also find in a more general model that people with

less precise priors update more in response to an information treatment.

2. The TSLS Estimator in Information Experiments

This section applies standard results about theTSLS estimatorwithheterogeneous effects to

information provision experiments. TSLS estimates a weighted combination of individual

causal effects with weights proportional to the individual first stage; these weights are non-

negative and sum to one when the instrument shifts beliefs monotonically (Angrist and

Imbens, 1995). These estimates therefore depend on the covariance between individual

causal effects and the strength of the individual first stage.

I then consider when instrument monotonicity is consistent with the workhorse

Bayesian updating model. Unconditional instrument monotonicity follows from Bayesian

updating in active designs where treatment arms correspond to “high” and “low” signals.

In passive designs, it requires the additional strong assumption that the population only

contains “overestimators” or “underestimators”. However, common specifications that

condition on the prior by splitting the sample or by interacting the treatment indicator

with “exposure” to treatment have non-negative weights under Bayesian updating.

Even when weights are non-negative, standard TSLS estimates will depend on endo-

geneity in the first stage effects of information on beliefs. I then turn to the relationship

between the causal effects of beliefs and belief formation and updating is thus central to

the task of understanding existing TSLS estimates. A model of belief formation through

information acquisition at a fixed cost predicts that TSLS estimates will be attenuated

relative to the unweighted average partial effect. The key mechanism is that large causal

effects of beliefs cause people to form precise beliefs before the experiment and therefore

update less in response to the experimental signal.

Any model that makes predictions about the covariance between the learning rate αi
and the causal effect of beliefs on behavior τi can be used to interpret how TSLS estimates

of belief effects may differ from the APE.
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2.1. The Reduced Form Effect of Information Provision

In active designs, the “reduced form” effect of treatment is the effect of being assigned

to see the signal in arm A rather than the signal in arm B. In passive designs, this is the

effect of being assigned to see new information. Consider the simple OLS regression of

the outcome Yi on the treatment indicator Ti = 1
(
Zi = A

)
.

βRF ≡
Cov

(
Ti, Yi

)
Var
(
Ti
) (6)

= E
[
τi
(
Xi(A) – Xi(B)

)]
(7)

We substitute in the linear outcome equation from (1) to get the second line. The reduced

form effect of assignment to arm A on the outcome is the expectation of the individual

effect of beliefs on behaviors τi scaled by the individual effect of the information treatment

on beliefs Xi(A) – Xi(B). If all τi have the same sign, the reduced form effect of treatment

assignment on the outcome will be informative of the sign of the effect of beliefs on

behaviors only if the Xi(A) – Xi(B) are all positive or all negative. If some of the first stage

effects of treatment assignment on beliefs Xi(A) –Xi(B) are positive and others are negative,

then the reduced form effect of treatment assignment on the outcome can be of either

sign, depending on the covariance between the τi and the Xi(A) – Xi(B).

This also implies that the reduced form effect of new information can be close to zero

if there are shifts in beliefs in opposite directions that partially offset. If the first stage

effect on beliefs is positive for some people and negative for others, then the average effect

of the information treatment on beliefs can be close to zero, even if the effect of beliefs on

behaviors is large and the individual first stage effects of the information treatment on

beliefs are large.

From the Effect of Information Provision to the Effect of Beliefs. As has become more widely

appreciated recently (for example by Giaccobasso et al., 2022), reduced form estimates

can be difficult to interpret since they combine the causal effects of beliefs on behaviors

with the first stage effects of the information provision on beliefs. The reduced form can

therefore be small if beliefs have only a weak effect on behavior, or if the information

10



provision has only a weak effect on beliefs.

However, there are important cases when the reduced form effect is the parameter

of interest. The reduced form is of direct interest when the counterfactuals of interest

are about the effect of information provision per se, and not the effects of beliefs more

generally. For example, if the information treatment corresponds to a (potential) policy

intervention, then the reduced form effect of the information provision on behaviors is

directly policy-relevant.

The reduced form is more difficult to interpret when the relationship of interest is

the effect of beliefs on behavior. For this reason, researchers will often normalize the

reduced form effect of information provision on behaviors by the first stage effect of the

information provision on beliefs and report TSLS estimates.

Constructing TSLS Estimates. The TSLS coefficient is the ratio of the reduced form effect

in (6) and the “first stage” regression of beliefs Xi on treatment assignment Ti .

βTSLS ≡ βRF

βFS
=
Cov

(
Ti, Yi

)
Cov

(
Ti,Xi

) (8)

where βFS ≡ Cov
(
Ti,Xi

)
/ Var

(
Ti
)
. Since the treatment indicator Ti is a binary variable,

this can be rewritten as

=
E
[
Yi | Ti = 1

]
– E

[
Yi | Ti = 0

]
E
[
Xi | Ti = 1

]
– E

[
Xi | Ti = 0

] (9)

Recall that the treatment indicator Ti is defined such that Ti = 1 ⇐⇒ Zi = A and

Ti = 0 ⇐⇒ Zi = B, and substitute in the linear outcome equation in (1). This gives the

ratio

=
E
[
τi
(
Xi(A) – Xi(B)

)]
E
[(
Xi(A) – Xi(B)

)] (10)

To make the role of the heterogeneity clear, suppose that the effects of beliefs are constant

such that τi = τ. Then we can simplify (10) further:

E
[
τ
(
Xi(A) – Xi(B)

)]
E
[(
Xi(A) – Xi(B)

)] =
τE
[(
Xi(A) – Xi(B)

)]
E
[(
Xi(A) – Xi(B)

)] = τ
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This is the familiar result that the TSLS identifies the coefficient on the endogenous variable

in the outcome equation when this coefficient is a constant. This is an extremely strong

restriction in most applied settings, including the ones studied in this paper. For example,

in a study of beliefs about home value, constant effects of beliefs would imply that every

homeowner would respond the same way to learning that their house is worth $100, 000

more than they thought. In reality, people are likely to respond differently to this news:

some may choose to sell their house, others may choose to take out a home equity loan,

still others may change their consumption or savings behavior, and so on.

In the presence of heterogeneous effects, TSLS is not generally a consistent estimator

of the average of the heterogeneous coefficients on the endogenous variable. Instead,

the TSLS coefficient (like the reduced form) depends not only on the effects of beliefs on

behaviors τi but also on the covariance between the individual first stage effects of the

information treatment on beliefs Xi(A) – Xi(B) and the individual effect of beliefs τi. With

the aim of interpreting βTSLS as a weighted average of individual effects of beliefs τi, we

can rewrite the ratio in (10) as

E

[
τi ·

(
Xi(A) – Xi(B)

)
E
[(
Xi(A) – Xi(B)

)]] (11)

The weights on the effects of beliefs on behaviors τi are proportional to the individual first

stage effects of the information treatment on beliefs Xi(A) – Xi(B). The TSLS weights in (11)

are the weights in the reduced form (7) after normalizing by their average.

Under instrument monotonicity, the TSLS coefficient is a non-negatively weighted

average of individual causal effects τi. Formally, the instrument monotonicity assumption

is that either Xi(A) – Xi(B) ≥ 0 or Xi(A) – Xi(B) ≤ 0 uniformly for all i (Angrist and Imbens,

1995). If some people have higher beliefs in treatment armA and others have higher beliefs

in treatment arm B, then the instrument monotonicity assumption is violated.

Bayesian Updating and Instrument Monotonicity. The TSLS weights in (11) are strictly non-

negative (and have the same sign in the reduced form 7) when the instrumentmonotonicity

assumption holds. We can use the Bayesian updating model of the first stage to study the

plausibility of this assumption in active and passive designs. Substituting the Bayesian
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updating model of the first stage (2) into the expression for the weights in (11) gives Xi(A) –

Xi(B) = αi
(
Si(A) – Si(B)

)
.

We can use this to write the TSLS coefficient as

βTSLSTi = E

[
τi · αi

(
Si(A) – Si(B)

)
Ω–1
T︸ ︷︷ ︸

weights

]
(12)

whereΩT ≡ E
[
αi(Si(A) – Si(B))

]
is the average strength of the first stage,which ensures

the weights integrate to one.

Bayesian updating implies that 0 < αi < 1. The sign of these weights therefore depends

on the sign of Si(A) – Si(B). In an active design, the monotonicity assumption holds (or

is violated) by construction. If the treatment arms are coded such that Si(A) > Si(B) or

Si(A) < Si(B) uniformly for all i, then the monotonicity assumption follows directly from

Bayesian updating.

In a passive design, we use Si(B) to denote the prior X0i for the group that does not

receive information. Substituting this in to the expression for the weights, we see that the

sign of the weights depends on the sign of Si(A) – X0i . These weights are positive when

Si(A) – X0i has the same sign for all participants. This is equivalent to the requirement that

the signal is either above (or below) the prior for every person, which is often hard to justify

empirically. 6 Instead of Bayesian updating, Vilfort and Zhang (2023) directly assume that

people update beliefs weakly in the direction of the signal: Si(z) ≥ X0i =⇒ Xi ≥ X0i
and show that non-negative weights require the same additional assumption about priors.

Instrument monotonicity is for this reason difficult to justify in passive designs.

2.2. Constructing TSLS Estimates with Non-NegativeWeights

To ensure that the weights are non-negative, researchers will use information on prior

beliefs to construct alternative estimators. One strategy uses prior beliefs to split the

sample based on the direction that the signal shifts beliefs. Another strategy constructs

an exposure-weighted instrument, where the treatment indicator is interacted with the
6For example Cullen et al. (2022), Cullen and Perez-Truglia (2022), and Fuster et al. (2022) observe people

with prior beliefs above and below the signal.
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difference between the difference between the two signals (active designs) or the signal and

the prior (passive designs). Vilfort and Zhang (2023) propose a general framework to use

priors and signals to construct specifications with non-negative weights. This framework

includes the split sample and exposure-weighted designs as special cases.

These strategies have non-negative weights under the same assumption: people update

their beliefs towards the signal. This is an immediate implication of the Bayesian updating

model, which implies that the learning rateαi is strictly between zero and one. In Appendix

A, I show that the Bayesian updating assumption can be used to construct the split sample

estimator even when priors are not elicited. The sign of the shift in beliefs can be inferred

from the posterior beliefs and the signal.

Ensuring Non-Negative Weights by Splitting the Sample. Consider estimating the regression

in (8) separately for the groups with priors above and below the signal.

β
split
+ ≡

Cov
(
Ti, Yi | Si(A) – X0i > 0

)
Cov

(
Ti,Xi | Si(A) – X0i > 0

) (13)

=
E
[
τiαi

∣∣Si(A) – X0i ∣∣ ∣∣∣ Si(A) – X0i > 0]
E
[
αi
∣∣Si(A) – X0i ∣∣ | Si(A) – X0i > 0] (14)

= E
[
τi · αi

∣∣Si(A) – X0i ∣∣Ω–1
+

∣∣∣ Si(A) – X0i > 0] (15)

and symmetrically

βsplit– ≡
Cov

(
Ti, Yi | Si(A) – X0i < 0

)
Cov

(
Ti,Xi | Si(A) – X0i < 0

) (16)

=
E
[
τi · αi

∣∣Si(A) – X0i ∣∣ ∣∣∣ Si(A) – X0i < 0]
E
[
αi
∣∣Si(A) – X0i ∣∣ | Si(A) – X0i < 0] (17)

= E
[
τi · αi

∣∣Si(A) – X0i ∣∣Ω–1
–

∣∣∣ Si(A) – X0i < 0] (18)

whereΩ+ ≡ E
[
αi
∣∣Si(A) – X0i ∣∣ | Si(A) – X0i > 0] andΩ– ≡ E

[
αi
∣∣Si(A) – X0i ∣∣ | Si(A) – X0i < 0]

are constants that normalize the weights to integrate to one. Under Bayesian updating,

β
split
+ and βsplit– can be interpreted as non-negatively weighted averages of individual

partial effects τi.
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Notice that the priors X0i are used only to construct the subsamples, and that the sign

of the difference between the signal and prior is sufficient for this conditioning. After

conditioning on the sign of Si(A) – X0i , the same TSLS regression as in (8) is estimated.

Bayesian updating implies that feasible estimators for the split estimators (13), (16) can

be constructed even when the prior belief is not directly observed. If the posterior lies

between the prior and the signal, the direction that the signal shifted beliefs can be inferred

from the posterior and the signal. See Appendix A for further discussion of this strategy to

ensure positive weights in a passive design when priors are not elicited.

Ensuring Non-Negative Weights by Constructing an “Exposure” Instrument. Another way that

information on the prior can be incorporated is by constructing an exposure-weighted

instrument. In an active design, the exposure (Si(A) – Si(B)) is the difference between the

two signals (Bottan and Perez-Truglia, 2022b; Roth et al., 2022). In a passive design, the

exposure (Si(A) – Si(B)) = (Si(A) – X0i ) is the difference between the signal and the prior

(Armona et al., 2019; Cullen and Perez-Truglia, 2022). The exposure-weighted instrument

interacts the treatment indicator with the exposure to treatment.

∆i ≡ Ti(Si(A) – Si(B)) (19)

In order to be uncorrelated with the structural error term Ui, this instrument needs to be

re-centered; this can be done manually or by including (Si(A) – Si(B)) as a control as in

Cullen and Perez-Truglia (2022). After re-centering, the instrument is

∆̃i ≡
(
Ti – E

[
Ti
])
(Si(A) – Si(B)) (20)

The TSLS target parameter is then

βTSLS∆ ≡
Cov

(
∆̃i, Yi

)
Cov

(
∆̃i,Xi

) (21)

=
E
[
ταi(Si(A) – Si(B))2

]
E
[
αi(Si(A) – Si(B))2

] (22)

= E
[
τ · αi(Si(A) – Si(B))

2Ω–1
∆

]
(23)
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whereΩ∆ ≡ E
[
αi(Si(A) – Si(B))2

]
is a normalizing constant. Instead of weighting individ-

uals proportional to the absolute value of the first stage (as in the split sample approach),

the exposure-weighted instrument weights them proportional to αi(Si(A)–Si(B))2, which is

quadratic in the difference between the signals (active designs) or the difference between

the signal and the prior (passive designs). These weights are non-negative, but put even

more weight on outliers.

Like in the split sample regressions, these weights are non-negative under the as-

sumption of Bayesian updating. Substantively, this is an assumption that people update

beliefs uniformly towards the signal. Bayesian updating can then be relaxed so long as the

assumption that αi ≥ 0 is maintained.7

2.3. Interpreting TSLS Estimates with Non-NegativeWeights

β
split
± and βTSLS∆ both aggregate individual partial effects τi by weighting them proportion-

ally to αi. In Bayesian updating model, this puts the most weight on those with the least

precise priors. The difference between the parameters targeted by the split regressions

and the exposure weighted instrument is whether the term that depends on the difference

Si(A) – Si(B) is guaranteed to be non-negative by taking the absolute value of the difference

(βsplit± ) or by taking the square of this difference (βTSLS∆ ). Relative to the split regressions,

the exposure weighted instrument puts more weight on outliers. In either case these

estimates depend on endogeneity in both the learning rate αi and the difference in signals

Si(A) – Si(B) (active) or the prior Si(A) – X0i (passive).

2.3.1. Endogenous Belief Formation Through Costly Information Acquisition

The parameters identified by TSLS depend on the learning rate αi. In passive designs,

these weights also depend on the content of the prior beliefs. In a broad class of models of

endogenous belief formation, people with large causal effects of beliefs
∣∣τi∣∣ endogenously

form precise beliefs. The following example illustrates the key dynamic that causes people
7Weights will also be non-negative if every individual updates uniformly away from the signal (i.e. αi ≤ 0

for all i). Negative weights arise if people have an individual first stage that is of a different sign than the
average first stage.
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to endogenously formmore precise beliefs when these beliefs have a strong effect on their

behavior.

Example: Alice checks the weather because she (sometimes) bikes to work. Bob drives to work

every day. However, Alice drives to work only if the weather is bad and bikes when the

weather is nice. Alice checks the weather before she leaves the house so that she can

decide how she wants to commute to work. Bob gets into his car and starts driving without

needing to check the weather. Alice and Bob are sampled into an information provision

experiment; the experimenter gives both Alice and Bob an informative signal about the

weather for the day. Since Alice had already checked the weather for the day, she changes

her beliefs only slightly. When Bob is shown new information, he significantly revises his

beliefs since he did not check the weather before the experiment.

On average, this intervention shifts beliefs, but it does not shift behaviors; the experi-

menter may then erroneously conclude that the mode of transportation does not depend

on beliefs about the weather. However, we know that Alice chooses how to commute

based on her belief about the weather conditions. People whose actions depend on their

beliefs will invest time and energy into forming precise beliefs, before the experiment

takes place. Then, at the time of the experiment, the people who are most responsive to

new information are the people whose decision-making depends only weakly on their

beliefs.

Models of Endogenous Belief Formation via Costly Information Acquisition. People have a

subjective belief distribution given by Fi(·). People are uncertain about their beliefs, and

this uncertainty about their beliefs generates uncertainty about the action that they would

like to take. LetRi(F) denote the subjective risk or ex-ante regret (for example, the expected

loss) that individual i faces when their beliefs are given by F.

Wemake the following assumptions onRi(·). First, uncertainty is costly:
∂Ri
∂σ2

≥ 0, where
∂Ri
∂σ2

= 0 if and only if τi = 0. Second, since there is uncertainty in beliefs, it is costly to

base behavior on these beliefs: ∂Ri
∂
∣∣τi∣∣ ≥ 0, where ∂Ri

∂
∣∣τi∣∣2 = 0 if and only if σ2 = 0. Finally,

uncertainty is more costly for people whose beliefs affect actions more: ∂2Ri
∂σ2∂

∣∣τi∣∣ > 0.
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FIGURE 1. People with Large Effects of Beliefs τi Form Precise Beliefs

∣∣τi∣∣

Disutility (Risk) Ri(Fi) Ri(Fi+) + c Ri(Fi++) + 2c

τ∗ τ∗∗

No signal∣∣τi∣∣ < τ∗ ⇒σ2i = σ2

One signal
τ∗ <

∣∣τi∣∣ < τ∗∗ ⇒σ2i = σ2+

Two signals
τ∗∗ <

∣∣τi∣∣⇒σ2i = σ2++

Notes: This figure plots the loss as a function of
∣∣τi∣∣ after seeing no signals, one

signal, and two signals. The assumptions on Ri ensure that each pair of lines
crosses exactly once. Since Ri(F) = Ri(F+) when τi = 0, Ri(F) < Ri(F+) + c. If σ2++ >
0, these curves are all strictly increasing in

∣∣τi∣∣ by assumption. Additionally,
since σ2 > σ2+ > σ2++, then Ri(F) is steeper than Ri(F+), which is steeper than
Ri(F++) by the assumption that

∂2Ri
∂σ2∂

∣∣τi∣∣ > 0.

People make a decision to pay a cost c > 0 to obtain new information or to do nothing.

There is an updating process such that the variance σ2+ of beliefs after viewing a signal

F+ is less than the variance σ2 of the initial beliefs F. People then trade off the reduction

in risk from the new information against the cost of the signal. Thus, when person i has

beliefs F, her loss can be given recursively by

Vi(F) = min
{
Ri(F),Vi(F+) + c

}
(24)

Given the assumptions we have made on Ri, for any beliefs F with σ2 > 0, there is some

threshold value τ∗ such that people with
∣∣τi∣∣ > τ∗ prefer to pay c to update their beliefs.

That such a threshold exists is guaranteed by the fact that Ri(F) = Ri(F+) when τi = 0, which

this implies that Ri(F) < Ri(F+) + c at τi = 0. However, since
∂2Ri

∂σ2∂
∣∣τi∣∣ > 0, we also know that

∂Ri(F)
∂
∣∣τi∣∣ > ∂Ri(F+)

∂
∣∣τi∣∣ since σ2 > σ2+.

At τi = 0, Ri(F) is below Ri(F+) + c. However, Ri(F) is increasing faster than Ri(F+) in
∣∣τi∣∣

such that eventually these curves will cross. And since Ri(F) is always increasing faster
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than Ri(F+) in
∣∣τi∣∣, they will cross exactly once. Figure 1 illustrates this graphically. When

beliefs are formed through such a process, people with larger causal effects of beliefs will

have (weakly) more precise beliefs in equilibrium.

Using Models of Belief Formation and Updating to Interpret TSLS Estimates. The class of

parameters that are targeted by existing TSLS specifications depend not only on the causal

effects of beliefs on outcomes τi, but also on any endogeneity in the way that beliefs are

updated in response to new information. In the toymodel discussed in Section 2.3.1, beliefs

are formed endogenously through a process of costly information acquisition. In Appendix

B, I solve a special case of this model where the subjective risk Ri is given by the expected

quadratic loss. Parameterizing the loss function makes it possible to solve analytically

for the learning rate αi and variance of the prior σ2i as a function of the causal effects of

beliefs τi.

People have inaccurate and imprecise beliefs precisely because they have small in-

dividual partial effects (small
∣∣τi∣∣); when beliefs are an important determinant of the

behaviors (large
∣∣τi∣∣), people exert effort to form accurate and precise beliefs. In this

environment, parameters with weights proportional to the strength of the shift in beliefs

will be attenuated and underestimate the magnitude of the average effect.

Alternativemodels of the relationship between belief updating and the effects of beliefs

on behaviors can be used to relate causal parameters estimated via TSLS to the APE.

For example, Fuster et al. (2022) allow variation in the learning rate to come from a

more complicated model that adds dynamics of rational inattention to costly information

acquisition. Any model that makes predictions about the covariance between the learning

rate αi and the causal effect of beliefs on behavior τi can be used to make predictions

about the difference between TSLS estimates and the APE. Only in the special case when

the heterogeneity in the first stage is uncorrelated with individual causal effects of interest

will TSLS identify the average partial effect.
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3. Identifying the Average Partial Effect of Beliefs on Behavior

Since the parameters estimated in common TSLS specifications can understate the causal

effects of beliefs on behaviors, researchers hoping to learn about these effects may be

interested in targeting alternative parameters that are informative about the general

population, and not just the subset whose beliefs are most responsive to new information.

One contribution of this paper is establish the conditions under which the average partial

effect E
[
τi
]
is point identified and to provide an estimator.

There are two main conditions: first, the identification argument will rely on a condi-

tional rank invariance that is implied by Bayesian updating. Second, since the observed

update in beliefs is used to construct a control for the endogeneity in belief updating,

the proposed estimator is available in active designs. I suggest how this estimator may

be extended to other experimental designs but leave the formal development of these

arguments to future work. In the remainder of this section, I develop the identification

argument and formally state the necessary assumptions.

3.1. Identifying the Average Partial Effect via Local Least Squares

Recall that people are randomly assigned to a high signal Si(A) or low signal Si(B). The

potential outcome for the posterior is

Xi(z) = X
0
i + αi

(
Si(z) – X

0
i
)

I will use a two-step approach to identify E
[
τi
]
followingMasten and Torgovitsky (2016).

First, I will construct a control function Ri such that
Cov
(
Yi,Xi|Ri=r

)
Var
(
Xi|Ri=r

) = E
[
τi | Ri = r

]
. Then,

I will integrate over the support of the control function to identify E
[
τi
]
. The key step in

constructing this control function is to condition on the prior, the potential signals and the

assigned treatment and then use the remaining variation in X to identify the conditional
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rank of αi. 8We can construct such a control function as follows:

Ri1 = Fα|W ,Z(αi) =

FX|W ,Z(Xi) Si(Zi) – X0i > 0

1 – FX|W ,Z(Xi) Si(Zi) – X0i < 0
(25)

Wi ≡
[
X0i Si(A) Si(B)

]
(26)

Ri ≡
[
Ri1 Wi

]
=
[
Fα|W (αi) X0i Si(A) Si(B)

]
(27)

Conditional on the prior and potential signalsWi, and the assigned treatment Zi, all the

remaining variation in the posterior Xi is generated by the learning rate αi. Notice that

when Si(Zi) = X0i , Xi = X
0
i and thus Xi is not informative about αi. This means that in

passive designs where the control group does not recieve new information, the learning

rate is not identified in the control group and so this estimator is not feasible.9

If Var
(
Xi | Ri = r

)
=/ 0 for all r, then it follows immediately from the law of iterated

expectations that E
[
E
[
τi | R = r

]]
= E

[
τi
]
so E

[
τi
]
is identified. If αi > 0 for all i, which

in the Bayesian model is equivalent to assuming that prior beliefs are not degenerate, then

it is sufficient to design the experiment such that Si(A) =/ X0i , Si(B) =/ X
0
i , Si(A) =/ Si(B),

and 0 < P
[
Zi = 1

]
< 1 to ensure that Var

(
Xi | Ri = r

)
=/ 0.10 If any of these do not hold,

then the conditional average partial effect can be identified for the subset R such that

Var
(
Xi | Ri = r

)
=/ 0 for r ∈ R. The two-stage control function is an alternative way to use

the variation induced by the instrument; instrument relevance is thus still required.
8In some experiments, the variance of the prior is elicited. If the variance of the prior is sufficient to

explain all of the heterogeneity in the learning rates αi (i.e. the normal-normal Bayesian micro-foundation
of the updating equation is correctly specified), then the variance of the prior can be used directly as a
control function instead of the rank of α. I discuss below, using the rank of the learning rate is robust to
certain kinds of misspecification in the updating equation. In this sense, the rank of the learning rate can be
used to construct a valid control function under weaker assumptions than are needed to directly use the
variance of the prior. However, using the variance of the prior may be one way to implement this estimator
in passive designs where the learning rate is not identified among the control group that does not receive
information.

9In passive designs where pre and post-treatment outcomes are available in addition to pre and post-
treatment beliefs (Cullen et al., 2022; Wiswall and Zafar, 2015), a closely related strategy that uses the within-
person changes in beliefs and outcomes would be feasible . In this case, the pre-treatment observations of
beliefs and outcomes are used as the control group. Noting that the extension is immediate, I focus on the
more common case where the outcome is only observed post treatment.
10Recall that our notation uses Si(B) ≡ X0i in passive designs. This assumption thus rules out passive

designs.
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ASSUMPTION 1.

(a) Instrument Exogeneity Zi ⊥⊥
(
X0i , Si(·),Ui,αi, τi

)
(b) Linear Outcome (eq. 1) The outcome is linear in beliefs; partial effects are heterogeneous.

Yi = τiXi + Ui

(c) Linear Updating (eq. 2) Beliefs are updated following Xi(z) = X0i + αi
(
Si(z) – X0i

)
(d) Relevance The instrument always induces variation in beliefs.

αi ∈
(
0, 1
)
; Si(A) =/ X0i , Si(B) =/ X

0
i , Si(A) =/ Si(B) and P

[
Zi = 1

]
∈ (0, 1)

(e) Existence E
[
τi
]
and Var

(
Xi
)
exist and are finite

PROPOSITION 1. Under Assumption 1, Cov
(
Yi,Xi|Ri=r

)
Var
(
Xi|Ri=r

) = E
[
τi | Ri = r

]
.

The proof is an application of the argument in Masten and Torgovitsky (2014) condi-

tional on the sign of the difference between the signal and the prior (Appendix C).

Having identified E
[
τi | Ri = r

]
, one can identify E

[
τi
]
by integrating over the support

of R. Since Wi is directly observed, and (25) shows that the remaining entry Ri1 is also

identified, the regression of Yi on Xi conditional on Ri = r is feasible. Of course, since

E
[
τi|Ri = r

]
is identified, heterogeneity analysis is immediately available by aggregating

over only a subset of possible values of the control function. This can be used to empirically

study the relationship between the learning rate αi and the causal effects of beliefs τi.

For ease of exposition, I have maintained in Assumption 1.c that belief updating is

linear, though it is not necessarily Bayesian since there is no structure on the learning

rates αi. However, it is not necessary for belief updating to be linear.

The APE will still be identified as long as belief updating satisfies a rank invariance

condition (Masten and Torgovitsky, 2014, 2016). Conditional on the prior and the sign of

the difference between the signal and the prior, the distribution of posterior beliefs must

be rank invariant across potential signals. Suppose Chris and Dianne have the same prior

and recieve the same signal that is above their prior. This assumption states that if Chris’s

posterior is higher than Dianne’s, then Chris’s posterior would also be higher than Dianne’s
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if they were both to recieve another signal that is also above their prior (and lower than

Dianne’s if they recieve a signal that is below their prior).

These dynamics follow from Bayesian updating model; the observed ranking would

be rationalized by assigning Chris a higher learning rate, which would then generate the

needed predictions. This structure is equivalent to the statement in (25) that identifies the

conditional rank of αi through the conditional rank of the posterior Xi. Bayesian updating

is a familiar model that implies rank invariance and thus is a sufficient assumption, but

rank invariance of this sort can also be assumed directly.

When the outcome equation is nonlinear, the control functionwill still ensure that there

is no bias due to correlation between heterogeneity in the first stage and heterogeneity in

the outcome equation. Regression conditional on Ri = r will recover a best linear predictor

of the outcome given beliefs; the coefficient of interest is a positively weighted average of

the derivative of the conditional expectation function (Yitzhaki, 1996). Integrating again

over Ri preserves the interpretation as a positively weighted average.

4. An Application to the Effect of Beliefs on Demand for Public Policy

Settele (2022) studies the effect of beliefs about the gender wage gap on demand for policies

aimed at increasing gender equality. Settele randomly assigns some participants to receive

a high signal of women’s relative wages – that women’s wages are 94% of men’s wages –

and some to a low signal of women’s wages – that they are 74% of men’s wages. 11 Themain

estimates use the comparison between the groups that receive high and low signals of

relative earnings for women to estimate the causal effects of beliefs.

In my preferred specification, the LLS estimate of the APE of a standard deviation

shift in beliefs on a policy demand index is roughly 70% larger in magnitude than the

corresponding TSLS estimate. The imprecisely estimated heterogeneous treatment effects

are also consistent with the theoretical predictions. The average partial effect for people in

the top fifth of the learning rate αi distribution is close to zero (0.003). The average partial
11These estimates come from the most recent CPS and ACS survey at the time of the experiment, and

so are generated without deception. Akesson et al. (2022) and Bottan and Perez-Truglia (2022b) also use
this source randomization strategy to generate variation in potential signals without deception. See Settele
(2022) for more information about the design of the experiment.
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effect for the bottom 60% of the learning rate (-0.28) is almost triple the corresponding

TSLS estimate (-0.105). However, I estimate that TSLS places slightly more weight on the

top 20% of the learning rate distribution than the bottom 60%.

In the rest of this section, I discuss how the LLS estimator can be implemented and

applied to this setting. I then present and compare LLS and TSLS estimates.

4.1. Estimating the Control Function

In the first stage, I use a kernel to estimate the CDF of the posterior conditional on a

particular value of the prior. I estimate this conditional CDF at every value of the prior in

the data and use the these estimates to recover the rank of the unobservable learning rate

αi.

Then, in the second stage, I condition on the first-stage estimates of the conditional rank

of the learning rate using a kernel. Then, I estimate the intermediate conditional average

partial effect E
[
τi | Fαi|Wi

(αi) = r1
]
by regressing the policy index Yi on the posterior belief

Xi and the prior X0i .
12 Conditional on the learning rate and the prior, the only remaining

variation in beliefs comes from the value of the randomly assigned signal. Then, I estimate

the average partial effect by numerically integrating over the distribution of ranks. To

estimate standard errors, I bootstrap this procedure following Masten and Torgovitsky

(2016).

Additional Covariates from Settele (2022) Are Omitted. To avoid complications from includ-

ing additional covariates, I ignore the additional controls that Settele (2022) includes in

the main specification reported in Table 5 of the paper. In Appendix D.1, I compare results

in this specification without additional covariates to the full paper specification. Point

estimates are somewhat larger in magnitude without these additional controls, but results

are qualitatively similar. Thus, comparisons between the APE that I estimate and TSLS
12If the linear updating model is correctly specified, then it is sufficient to control for the prior linearly,

which eases estimation. It is possible to condition on the prior non-parametrically by using, for example,
a two-dimensional kernel to condition on both F(αi) and the prior X0i and then regressing the outcome
directly on the posterior in the intermediate regression. This is a more data intensive approach that will use
fewer observations for each intermediate regression.
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estimates will use results from this more parsimonious specification, and not the results

reported in Settele (2022).

4.2. Empirical Evidence that TSLS Underestimates the APE

The main TSLS specification in Settele (2022) Table 5 uses an indicator for assignment

to the “low” signal as an instrument for posterior beliefs. Since the signals are common

(Si(z) = S(z)), TSLS targets

E
[
τi · α̃i

]
(28)

where α̃i ≡ αi/E
[
αi
]
is the learning rateαi normalized by themean E

[
αi
]
so that these

weights integrate to 1. 13 Under the Bayesian learning assumption maintained throughout

(in particular the assumption that 0 ≤ αi), this is a non-negatively weighted average. Since

these weights are given by the learning rate αi, the toy model in Section 2.3.1 predicts that

the TSLS estimates will be smaller inmagnitude than the average partial effect. Replicating

the main specification from the paper without covariates yields an estimate of –0.105.14

In Panel A of Figure 2 I report the local least squares (LLS) estimate of the average

partial effect of beliefs on the policy demand index. The control function estimate of the

APE is –0.178, which is roughly 70% larger in magnitude than the TSLS estimate of –0.105. I

also plot binned estimates of the conditional average partial effect for different ranks of

the learning rate αi. The conditional average partial effect (CAPE) is the average partial

effect for people at the r1th rank of the learning rate E
[
τi | Fαi|Wi

(αi) = r1
]
. For ease of

interpretation, I present binned estimates of the CAPE in five equally sized bins.15 In

Appendix Figure D.1 Panel A, I present the full set of estimates of the CAPE at every value

of the learning rate in the sample.

The estimates of the conditional average partial effect are noisy, but the estimates are

consistent with the predictions of the model in Section 2.3.1. In particular, notice that
13Since the difference in signals is a constant, it cancels from both the individual weights and the normal-

ization term in the general expression in (11).
14Following the original paper, estimates throughout are scaled to be relative to a standard deviation

change in beliefs.
15When constructing these bins, I exclude the top 0.05 and bottom 0.05 ranks of the learning rate, since

the bandwidth begins to truncate within this range, making estimates within these ranges particularly noisy.

25



FIGURE 2. LLS Estimates of the Average Partial Effect are 70% Larger than TSLS

CAPE Estimates (Binned)

TSLS: -0.105

LLS: -0.178
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Panel A: Conditional Average Partial Effects of Beliefs

TSLS Weights

LLS Weights
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0.0 0.2 0.4 0.6 0.8 1.0

Panel B: TSLS and LLS Weights

Rank r of Heterogeneous Learning Rates

Notes: Panel A presents a binned scatter plot of conditional average partial
effect E

[
τi | Fαi|Wi

(αi) = r1
]
for different ranks r1 of the learning rate αi. Panel

B presents the weights that the TSLS estimator and the LLS estimators place
on each bin. By construction, LLS places equal weight on each bin. Appendix
Figure D.1 reports the raw CAPE estimates at every r without binning. Bins are
constructed excluding the top and bottom 0.05, since the bandwidth begins to
truncate within these ranges as the rank r approaches the boundary.

the conditional average partial effect is close to zero for the top 20% of the learning rate

distribution but is quite large for the bottom 40%.

Across 1,000 bootstrap iterations, the best linear predictor of the CAPE curve has a

positive slope in 97% of iterations; the fifth percentile is 0.019. Since the LLS estimate of

the APE is negative at every iteration, this bootstrap evidence suggests that the magnitude

of the causal effects is decreasing as the rank of the learning rate increases.

In Panel B of Figure 2, I estimate the TSLS weights associated with each of the five

bins. I also include the LLS weights for each group to highlight the fact that LLS places

equal weight on each bin by construction. Comparing Panels A and B shows that the TSLS

weights are correlated with the heterogeneity in the estimated casual effects. TSLS places

roughly equal weight on the bin with the largest learning rate (and causal effects close
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FIGURE 3. TSLS is Attenuated Relative to LLS in 92% of Bootstrap Iterations

-0.4 -0.3 -0.2 -0.1 0.0 0.1

LLS TSLS

Panel A: Coefficient Estimates (TSLS and LLS)

Bootstrap Estimate: Coefficient
-0.4 -0.3 -0.2 -0.1 0.0 0.1

P(LLS < TSLS) = 0.920
Panel B: Difference between Coefficient Estimates

Bootstrap Estimate: Difference

Notes: Panel A plots the marginal bootstrap distributions of TSLS and LLS es-
timates after 1000 iterations. Panel B plots the bootstrap distribution of the
difference between the LSS and TSLS estimates. The bootstrap standard devia-
tion is 0.042 for the TSLS estimator and 0.031 for the LLS estimator.

to zero) and the bottom three bins (where the causal effects are large). This is consistent

with the theoretical mechanisms discussed throughout and is exactly the dynamic that

will attenuate the TSLS estimates.

In Panel A of Figure 3, I plot the marginal distribution of TSLS and LLS estimates

across 1,000 bootstrap iterations. With a bandwidth of 0.05, the LLS estimates appear more

precisely estimated than the TSLS estimates. The marginal distributions do have some

overlap, but are centered in different locations. Since these estimates are correlated, a

comparison of the marginal distributions understates the difference. In Panel B of Figure

3, I plot the distribution of the difference between the LLS and TSLS estimates. This reveals

that, even though the marginal distributions do overlap, the estimate are correlated such

that the difference has the expected sign in 92% of iterations.

Given the power of these estimates, it is difficult to assess the extent to which the CAPE
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curve is decreasing at the lowest levels and therefore forming a U shape. Estimates are

particularly noisy for the people with the lowest ranks of the learning rate. Intuitively,

since the learning rate is low, there is relatively less variation in the posterior belief, which

makes estimating the regression of the outcome on beliefs more difficult. However, the

true CAPE curve may indeed be U-shaped, so that the largest causal effects of beliefs are

found among people around the 20th percentile of the learning rate distribution, and not

at the bottom.

A richer model of belief formation and updating may then be necessary to explain the

behavior of people with the lowest ranks of the learning rate. Perhaps a model that also

includes rational inattention in the spirit of Fuster et al. (2022) can explain the behavior of

people with the lowest learning rates. In such a model, some people with weak effects of

beliefs on behavior would not update their beliefs at all in response to new information

because of costs of processing information.

An interpretation proposed by Settele (2022) is “politically motivated” belief formation;

some people form beliefs that allow them to sustain their desired political beliefs. This is

an alternative mechanism that would rationalize small causal effects of beliefs among a

group that does not update their beliefs very much. Formally modelling these dynamics

could rationalize a U-shaped relationship between the learning rate and the effect of beliefs

on behavior by introducing additional terms into the expression for the learning rate.

This discussion highlights the power of this approach beyond simply estimating the

average partial effect. Regardless of the model that generates heterogeneous learning

rates, so long as the unobservable heterogeneity in the first stage can be captured in the

learning rate αi, the conditional average partial effect curve can be estimated. In addition

to providing estimates of the APE, these intermediate local least squares estimates allow

for a rich empirical investigation of the relationship between belief formation and updating

and the causal effect of beliefs on behavior.
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5. Conclusion

Two-stage least squares estimates of the average partial effect of beliefs on behavior depend

not only on the effects of beliefs, but also on endogeneity in belief updating. The sign of

the bias is given by the covariance between the causal effects of beliefs and belief updating

in the first stage. A simple model with costly information acquisition predicts that this

covariance will be negative. People with strong causal effects endogenously form precise

beliefs before the experiment and thus update beliefs less in response to the information

treatment.

I confirm these predictions in an application to a recent study of the effect of beliefs

about the gender wage gap on demand for public policy (Settele, 2022). Using an alternative

local least squares estimator, I estimate that the average partial effect is almost 70% larger

than the corresponding TSLS estimate. LLS estimates a larger average effect than TSLS

because the people who update their beliefs the most have the smallest causal effects of

beliefs and the largest weights in TSLS.

If this mechanism is present more widely, it suggests that common TSLS estimates

understate the average strength of the causal effect of beliefs. This may explain puzzling

results in the literature that find small or insignificant effects of beliefs on behavior despite

having information treatments that have a large effect on beliefs (Alesina et al., 2023;

Kuziemko et al., 2015).
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Appendix

A. Ensuring PositiveWeights in Passive DesignsWith Unknown Priors

The dominant approach in the literature to ensure that the weights are non-negative is to

incorporate information on the prior belief, either by splitting the sample (Cruces et al.,

2013) or constructing an exposure-weighted instrument (Cullen and Perez-Truglia, 2022).

In this appendix, I provide a novel argument to identify a causal parameter that does

not require eliciting priors or monotonicity. Instead, we use the assumption that people

update their beliefs in the direction of the signal, but not past the signal. This follows from

Bayesian updating, but Bayesian updating is not strictly necessary; directly assuming that

the posterior belief is a convex combination of the prior and the signal is sufficient.

This assumption identifies the same causal parameters that are targeted by βsplit+ (15)

and βsplit– (18). This is a weaker assumption than instrument monotonicity, which requires

that the signal shifts beliefs in the same direction for all participants. This is a slightly

stronger assumption than what was needed in Section 2.3 when priors were available.

There we assumed that people update (weakly) towards the signal, but did not need to

assume that they do not cross it.

Since the control group that is not shown a signal, we directly observe their prior: recall

that Xi(B) = X0i in passive designs. Since the signal is known, we can directly condition on

the sign of (Si(A) – X0i ). The prior for the treated group is unknown and we observe only

Xi(A). But since we can rewrite the potential outcome equation in 2 as

Si(A) – Xi(A) = (1 – αi)(Si(A) – X
0
i )

and since α ∈
(
0, 1
)
then

Si(A) – Xi(A) > 0 ⇐⇒ (Si(A) – X
0
i ) > 0

We used the Bayesian updating structure, but note this could be relaxed to include any

model of updating such that the posterior lies between the prior and the signal.
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Thus, although the regressions in (13) and (16) are not feasible since they use the prior

to split the sample, the following regressions are feasible and equivalent.

β
split
+ = β̃

split
+ ≡

Cov
(
Ti, Yi | Si(A) – Xi > 0

)
Cov

(
Ti,Xi | Si(A) – Xi > 0

) (29)

βsplit– = β̃split– ≡
Cov

(
Ti, Yi | Si(A) – Xi < 0

)
Cov

(
Ti,Xi | Si(A) – Xi < 0

) (30)
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B. A ToyModel of Belief Formation via Costly Information Acquisition

Let Y be the action (e.g., list price of a house) and X denote beliefs (e.g., about the market

value). People start with a prior belief distribution centered around πi. The initial variance

of their beliefs is σ2X0 so that their beliefs are represented by the normal N(πi,σ
2
X0). For

simplicity, σ2X0 is common. We will consider signals S drawn from a normal distribution

N(µS,σ2S). This is an assumption that people have the same information environment.

People are uncertain about their beliefs, and this uncertainty about their beliefs gen-

erates uncertainty about the action that they would like to take. People act to minimize

the loss function Li( y, x) = D
(
y, Yi(x)

)
, for some distance function D, which is the disutil-

ity associated with taking action y when X = x. Intuitively, integrating Li( y, x) over the

distribution of beliefs converts uncertainty about beliefs (i.e., what is the probability that

X = x) into regret about actions (i.e., how far is the choice y from Yi(x), which is optimal

when X = x). In this loss function, beliefs affect utility only through their effect on actions.

There is no direct “psychic” cost of imprecise beliefs.

People choose Yi(x) following the rule Yi(x) = τix + Ui, where τi and Ui vary across

individuals, and have quadratic loss D(a, b) =
(
a – b

)2. They act to minimize their expected
loss, which is simply the expectation of Li( y, x) with respect to X

(
i.e. EX

[
Li( y, x)

])
.

When beliefs are given by the normal N(X,σ2X0), the choice of Y that minimizes ex-

pected loss is simply Y∗ ≡ Yi(X) = τiX + Ui. We can use this to further simplify the

expression for expected loss and write

EX
[
Li(Y

∗, x)
]
= EX

[
D(Yi(X), Yi(x))

]
(31)

= EX
[((

τiX + Ui
)
–
(
τix + Ui

))2] = τ2i σ
2
X (32)

The disutility generated by uncertainty about X is increasing in both the variance of the

belief distribution and the magnitude of the causal effect of beliefs on the outcome. This

expression allows us to study the information acquisition problem.

I endogenize belief formation by allowing people to pay a fixed cost C to view a signal

that is centered around the unknown true value. They then update beliefs following the
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normal-normal Bayesian learning formula we have been working with throughout. When

a person’s beliefs are given by N(X,σ2x), her loss is given recursively by

Vi(X,σ
2
x) = min

{
EX[Li(Yi(X), x)],ES[Vi(X

′(s)),σ2X′] + C
}

(33)

Where σ2X′ =
σ2Xσ

2
S

σ2X+σ
2
S
and the expectation ES is the expectation with respect to the signal.

Notice that in this model, the benefit of the signal comes from the fact that the posterior

variance is less than the prior variance as long as the prior distribution is not already

degenerate.

Solving this recursive problem gives the equilibrium condition

τ2i σ
2
X = τ2i σ

2
X′ + C (34)

In equilibrium, agents will be indifferent between paying the fixed cost to obtain new

information and living with the uncertainty they have.16 Replacing σ2X′ with its definition,

and recalling that 1 – σ2S
σ2S+σ

2
X
= αi we obtain the following equality

αiτ
2
i σ

2
X = C (35)

Agents for whom the outcome is very sensitive to the beliefs (τ2i is very large) will

update their information until σ2Xαi is small.
17 On the other hand, agents for whom the

outcome is not sensitive to beliefs (τ2i is small) will stop after seeing fewer signals, so that

σ2Xαi is relatively large.

We can see in this toymodel how the causal relationship of interest affects the formation

of beliefs before the experiment takes place. People whose actions depend more on their

beliefs will bemore willing to pay to obtain new information, and will therefore havemore
16To ease exposition, I have ignored integer constraints that will, in general, prevent this from holding

with equality. People will purchase signals until the next signal reduces their expected loss by less than the
cost of the signal and will generally be strictly worse off if they buy another signal, not indifferent. This
technicality makes exposition more cumbersome without any conceptual payoff.

17Notice that since αi ≡
σ2
X

σ2
S+σ

2
X
, αi and σ2X move together. That is, holding fixed σ2S, an increase in σ2X

implies an increase in αi and vice-versa.
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precise beliefs. In a Bayesian updating model, people with more precise beliefs will be

less responsive to new information. In this way, the amount of variation in beliefs that

can be induced by experimentally providing new information is directly depends on the

causal effects of interest.
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C. Proofs

C.1. Identification of the Average Partial Effect

This is a proof of proposition 1 that uses the structure of the specific information provision

setting for the sake of exposition. The linear updating and Bayesian learning structure

maintained throughout this paper is stronger than is necessary. Interested readers should

see Masten and Torgovitsky (2016) for a more general proof and for a formal discussion of

the more general conditions under which the APE is identified.

PROOF. First, use assumptions 1.b and 1.c to write

Cov
(
Yi,Xi | Ri = r

)
= Cov

(
τi
(
X0i + αi(Si(Zi) – X

0
i )
)
+ Ui,

(
X0i + αi(Si(Zi) – X

0
i )
)
| Ri = r

)
By definition r ≡

[
r1 x0 s1 s2

]
. Let α̃(r) be such that r1 = Fα|w,z(α̃).18Substituting this

in gives

= Cov
(
τi
(
x0 + α̃(Si(Zi) – x

0)
)
+ Ui,

(
x0 + α̃(Si(Zi) – x

0)
)
| Ri = r

)
= α̃(r)x0 Cov

(
τi, Si(Zi) | Ri = r

)
+ α̃(r)2 Cov

(
τiSi(Zi), Si(Zi) | Ri = r

)
Notice that the remaining random variables are τi and the remaining variation in Si | Ri = r.

Writing Si in terms of the switching equation makes it clear that all remaining variation

in Si comes from the treatment assignment Zi. Recall that by definition Si = Si(1)1
(
Zi =

1
)
+ Si(2)1

(
Zi = 2

)
so that (Si | Ri = r) = s11

(
Zi = 1

)
+ s21

(
Zi = 2

)
. From random assignment

(1.a), Cov
(
τi, Si(Zi) | Ri = r

)
= Cov

(
τi, s11

(
Zi = 1

)
+ s21

(
Zi = 2

)
| R = r

)
= 0. Substituting in

the switching equation to the final term gives

= α̃(r)2 Cov
(
τi
(
s11
(
Zi = 1

)
+ s21

(
Zi = 2

))
,
(
s11
(
Zi = 1

)
+ s21

(
Zi = 2

))
| Ri = r

)
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so from random assignment

= α̃2 Var
((
s11
(
Zi = 1

)
+ s21

(
Zi = 2

))
| Ri = r

)
E
[
τi | Ri = r

]
Which finally gives

Cov
(
Yi,Xi | Ri = r

)
= α̃2i Var

(
Si(Z) | R = r

)
E
[
τi | R = r

]
Var
(
X | R = r

)
= Var

(
X0i + α̃(Si(Z) – X

0
i ) | R = r

)
= α̃2i Var

(
Si(Z) | R = r

)
Combining these results, we have that

Cov
(
Yi,Xi | Ri = r

)
Var
(
Xi | Ri = r

) = E
[
τi | Ri = r

]
where assumption 1.d ensures that

Var
(
Xi | Ri = r

)
= Var

((
x0 + α̃(r)(Si(Zi) – x

0)
)
| Ri = r

)
> 0

18To define α̃(r) without needing to restrict F(·), let α̃(r) = inf
{
a | Fα|W (a) = r

}
.
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D. Additional Empirical Results and Alternative Specifications

In this section, I will provide some addition information about estimation of the control

function in Section 4 and some results from alternative specifications.

D.1. TSLS Estimates from Settele (2022) Are SimilarWithout Controls

Since I estimate the control function without additional controls, I also re-estimate the

main specification TSLSwithout these controls tomake these estimatorsmore comparable.

In Table D.1, I present results comparing the more parsimonious specification used in this

paper with the original estimates from Settele (2022). I will then compare these estimates

to the estimates of the APE. In Column 1, I replicate the specification in Table 5, Panel C

of Settele (2022). In Column 2, I omit the weights used in the original paper. In Column

3, I also omit the covariates used in the original paper. For the sake of simplicity, I will

omit the covariates used in the original paper in the control function estimation. Thus,

the control function estimates are most comparable to the TSLS estimates in Column 3,

and not the TSLS estimates in Column 1 (and the original paper).

There is no conceptual reason that this estimation cannot be done conditional on

covariates. However, since the control function estimation is a semi parametric estimator,

including these covariates is technically demanding and introduces new researcher de-

grees of freedom, making this exercise less transparent. For the purposes of the empirical

illustration, I use the parsimonious specification without additional covariates.

TABLE D.1. TSLS Estimates are Similar with and without Weights and Covariates

Paper Specification No Weights No Covariates

Policy demand index -0.087 -0.094 -0.105
(0.038) (0.038) (0.041)

Notes: This table replicates the TSLS estimates from Settele (2022). The first
column replicates the specification in Table 5, Panel C of Settele (2022). The
second column omits the weights used in the original paper. The third column
also omits the covariates used in the original paper. N = 3,022. Standard errors
for the TSLS estimates are heteroskedasticity-robust.
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D.2. Alternative Choices of the Bandwidth

We need to choose a bandwidth to approximate conditioning on the continuous rank of

the learning rate αi. In the main specification, the bandwidth has has a half-width of 0.050.

This is slightly smaller than the rule of thumb bandwidth of 0.0635, which “undersmooths”

the intermediate estimates to minimize bias in the final estimate of the APE following

Masten and Torgovitsky (2014).

Figure D.1 presents the raw results for a range of bandwidths h ∈
{
0.025, 0.05, 0.075

}
.

While the intermediate estimates of the conditional average partial effect (CAPE) curve

become noisier at the smaller bandwidth and smoother at the larger bandwidth, the final

estimate of the APE is remarkably stable and changes only at the 3rd decimal.

FIGURE D.1. LLS Estimates of the APE Are Not Sensitive to Choice of Bandwidth
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Panel B: Bandwidth 0.025
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Panel C: Bandwidth 0.075
Conditional Average Partial Effect of Beliefs: E[τi | R]

Rank r of Heterogeneous Learning Rates

Notes: This table presents the LLS estimate of the APE, as well as the CAPE
estimated estimated at every rank r in the sample at different values of the
bandwidth. Panel A reports the underlying CAPE estimates that are used to
construct the binned scatter plot in Figure 2 in the main body.
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